
Linux is a registered trademark of Linus Torvalds.

Union Mount
VFS based File System Namespace
Unification for Linux

Bharata B Rao
<bharata@linux.vnet.ibm.com>

IBM Linux Technology Center

December 2007

mailto:bharata@linux.vnet.ibm.com

Agenda
● Introduction to Union Filesystems.
● Basics of Filesystem Mounting.
● Union Mount.
● Semantics.
● Internals of Union Mount.
● Comparison with FS based approaches.
● Getting involved.

File System Namespace Unification

● Concept of merging the contents of two or
more directories/filesystems to present a
unified view.

Users of Unification
● Live CD systems – Writable RAM based FS

combined with a read only FS on CD, thus
allowing a writable disk-less system.

● Server Consolidation – Many servers sharing
a common RO installation.

● Disk-less NFS-root clients – Set of machines
sharing a single RO NFS root filesystem.

● Sandboxing
– Simulation of software updates.
– Testing OS updates.

History
● Sun's Translucent Filesystem (TLS) provided

filesystem unification.
● BSD provided a fully featured union mount

implementation with whiteout and copyup
support.

● Plan 9 had Union Directories.
● MAC OS X inherited union filesystems from BSD,

but didn't provide whiteout support.

Linux Approaches
● Unionfs (in -mm) from Stony Brook University.
● Aufs a fork of Unionfs.
● Both Unionfs and Aufs are filesystem based

approaches.
● Union Mount is a Virtual File System (VFS)

based approach to filesystem namespace
unification. (Original patches by Jan Blunck)

Unification at FS Layer

Unification at VFS Layer

File System Mounting
● Namespace – A hierarchical view of the filesystem

contents.

● Mounting – Adding the FS in the device to the
namespace tree.

● Eg: mount t ext3 /dev/sda1 /mnt
– ext3 – FS type, /dev/sda1 – Device, /mnt – Mount point

● struct path { struct vfsmount *, struct dentry
* }; uniquiely identifes a file in a namespace across
the system

Union Mount
● Transparent mounts

– mount /dev/sda1 /mnt
– mount –union /dev/sda2 /mnt

● /mnt becomes the union mount point of sda1
and sda2.

● sda2 becomes the topmost writable layer.
● sda1 is the RO bottom layer of the union.

Union Mount Semantics
● Directory listing (readdir)

– Merged contents of all directories of union.
– For same named files in multiple layers, only top

layer file is shown.
– Same named directories are merged again.

● Lookup
– Starts with topmost directory and proceeds

downwards.
– Stops and returns when the required file is

found.
– Descends into all lower layers in case of

directories to create subdirectory level
unions.

... Union Mount Semantics
● RO lower layers, copyup

– All but the topmost layer are RO immutable
layers.

– Write to a lower layer file results in the file
getting copied to topmost layer and write being
performed on the copy.

– Creates shadow directories if needed during
copyup.

● Whiteouts
– Place holders for files that don't exist logically.
– Deletion of a lower level only file/directory

creates a whiteout for it in the topmost
directory.

– Whiteout lookup returns -ENOENT.

Normal Mount

Union Mount

Union Stack
● Different layers of union are maintained as

stack in VFS.
● (vfsmount, dentry) pairs are used as building

blocks of union stack.
● Two layers of a union are linked together using

a union_mount structure.
struct union_mount {

 struct list_head u_unions;

 struct list_head u_list;

 struct hlist_node u_hash;

 struct hlist_node u_rhash;

 struct path u_this;

 struct path u_next;

};

... Union Stack
● Union stacks are built from two places:

– During mount operation or mount propagation.
– During lookup of a directory that is present in

more than one layer of the union.
● Union stacks are destroyed from two places:

– During an un-mount operation.
– When the upper layer dentry is destroyed after it

becomes unused.

Union Mount Structure

Directory Listing
● Directory entries are read using getdents(2) or

readdir(2).
struct dirent {

 long d_ino; /* inode number */

 off_t d_off; /* offset to this dirent */

 unsigned short d_reclen; /*length of d_name*/

 char d_name[NAME_MAX+1]; /* filename */

};
● Dirents are stored in a cache as and when they are

read.
● Dirents from all but the topmost layer are compared

against this cache to eliminate duplication.
● TODO:

– An approach which works for all filesystems.
– An approach which supports llseek(2).

Copyup
● Write to a lower layer file is performed after

copying the file to the topmost layer.
● Copy on Open: Copy is done when the file is

opened for writing.
● Lookup path has been modified to create the

shadow directories in the topmost layer.
● In-kernel file to file copy using splice.
● TODO:

– Currently only copyup of regular files supported.
– Support copyup from other places like chmod(2).
– Need to handle links correctly.

Whiteout
● Whiteouts are necessary to provide writable

unions.
● Whiteouts are handled entirely within kernel

and they are transparent to users.
● Added whiteout() inode operation.
● Filesystems need to implement ->whiteout() to

provide whiteout support.
● Typically filesystems are expected to create

and use a singleton whiteout inode for all
whiteout files in the filesystem.

● TODO:
– Whiteout support available only for tmpfs,

ext2/3/4 and need to add support for other
filesystems.

Rename
● For files and directories present only in the

topmost layer, traditional rename is used.
● Rename of a directory which is part of a union

or which is present only in the lower layer is
deferred to userspace by returning -EXDEV.

● Renaming of a regular file present only in the
lower layer is done by copying it up to the
topmost layer.

● For both source and target of rename, shadow
directories are appropriately created during
rename.

Problems with FS based approaches
● Stack information maintained by a separate

filesystem.
● Pseudo VFS objects (like dentry, inode, file)

maintained which link to real VFS objects from
the underlying filesystems.

● Maintaining coherency between union
filesystem and the underlying filesystem needs
extra efforts.
– Direct additions/deletions.
– Direct modifications: metadata and page cache

coherency.

Opportunities for
Contributions(as of Nov 2007)

● Union Mount is still a work in progress and
patches are in RFC state.

● Not much consensus has been reached on
many aspects (Eg. directory listing), so there is
a scope to get involved and contribute.

● Patches are mostly not tested thoroughly and
there exists some corner cases where it breaks.

● Writing Union Mount test cases for LTP is
highly desired.

Union Mount Patches
● Union Mount doesn't have a project site of its

own and most development, postings happen
on linux-kernel and linux-fsdevel mailing lists.

● Our last posting: http://lkml.org/lkml/2007/7/30/193
● Recent patches can be found at:

ftp://ftp.suse.com/pub/people/jblunck/patches/
(temporary)

● Needs changes to util-linux package to
support –union mount option.

http://lkml.org/lkml/2007/7/30/193
ftp://ftp.suse.com/pub/people/jblunck/patches/

Legal Statement
● This work represents the view of the author and

does not necessarily represent the view of IBM.
● IBM, IBM(logo), e-business(logo), pSeries,

e(logo) server, ans xSeries are trademarks or
registered trademarks of International Business
Machines Corporation in the United States
and/or other countries.

● Linux is a registered trademark of Linus
Torvalds.

● Other company, product, and service names
may be trademark or service marks of others.

