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A proposed 4-way multithreaded 8-way superscalar microproces-
sor implements the Alpha instruction set in a 0.125µm partially
depleted SOI technology (pdSOI).  Improvements over the previ-
ous design [1] include doubling instruction issue width to 8,
increasing the L2 Cache from 1.75MB to 3MB, and migrating
from a bulk 0.175µm CMOS process.  The combination of archi-
tectural enhancements and advanced process technology pro-
duce-single-threaded performance simulated at over 2.5x that of
the previous design [2].  4-way simultaneous multithreading
(SMT) further increases utilization of the 8 integer and 4 float-
ing point execution units by allowing concurrent execution of up
to 4 independent program threads.  Figure 20.1.1 is a block dia-
gram for this processor.  Die size is estimated at 420mm2 as indi-
cated in Figure 20.1.2.

To support 8-wide superscalar issue, the instruction fetch logic must
assemble a group of 8 valid instructions each cycle.  This block is
created by fetching 16 instructions from two separate instruction
cache blocks, each 8 instructions wide, and then collapsing over
instructions not on the predicted path.  The cache indices for the
fetches are determined by reading a line prediction array and need
not be sequential if the predictor indicates that a flow change occurs
in the first fetch block.  The 64kB instruction cache is organized into
8 independent banks to support the two fetches per cycle.  The two
fetched instruction blocks are passed into a collapsing buffer net-
work organized with instructions interleaved on a bit-by-bit basis.
In the collapser a series of one-high dynamic pull-down multiplex-
ers removes instructions not on the predicted path (Figure 20.1.3).
The collapser first left-justifies each block so the first valid instruc-
tion occupies position 0.  The 2nd block is then right shifted to align
with the end of the 1st block.  Finally the blocks are merged with the
aligned 2nd block overwriting invalid instructions from the 1st block.
The start and length pointers for the collapser are one-hot controls
from a multilevel branch predictor that tracks a unique prediction
for each instruction in the window and resolves two predicted taken
branches (one per 8 instruction block), allowing collapsed fetch
blocks to span the end of a basic block.

The collapsed instruction blocks pass through a register-renaming
stage, are aligned to a set of functional units, and enter a 128-entry
out-of-order issue queue that selects up to 8 issue-ready instructions
for dispatch.  While issue occurs out-of-order, performance is
improved by selecting the oldest data-ready instructions.  The previ-
ous CPU design uses a FIFO structure to maintain the original pro-
gram order, shifting unissued instructions into vacant FIFO positions
[3].  In this CPU, an age mask vector is used to avoid critical paths
from the FIFO employed on the predecessor (Figure 20.1.4).  As a new
instruction enters the queue, it is assigned an empty position in one
half of the 128-entry array.  It is also given a 64b age vector with all
bits but its own entry number set to 1.  Subsequent instructions
entering the queue clear the bit in this mask corresponding to their
entry position.  When the instruction becomes data-ready, it bids for
issue on its assigned pipeline by asserting a bit in the BID vector.  A
bit-wise logical AND of the age mask and the entire 64b BID vector
is performed, if the result is zero, then the instruction is the earliest
ready instruction in program order in this half of the issue queue, has
won the bid, and is issued to the appropriate functional unit.

SMT is implemented by adding circuitry to maintain the 4 inde-
pendent program counters and select a single thread each cycle
for fetch from the instruction cache.  As instructions are fetched,
they are tagged with a thread-ID that follows the instructions
through the instruction, execution, and memory units.
Significant performance gains of up to 2x in instruction through-
put are possible as the out-of-order issue queue is free to select
issue-ready instructions from any of the 4 simultaneous threads
[4].  In contrast to coarse grain multithreading, instructions from
more than one thread may be active in the integer and floating-
point pipelines simultaneously [5].  The added logical complexi-
ty for SMT given the existing out-of-order issue policy and regis-
ter renaming is modest, accounting for only about 6% additional
die area.  The most significant change required by SMT is the
inclusion of 32 integer and 32 floating-point registers for each of
the 4 threads.  The architectural state of the machine therefore
requires 256 registers.  With additional registers required to
support register renaming by covering up to 256 in-flight
instructions, a total of 512 registers are implemented.

The register file logically requires 16 read ports and 8 write ports to
support 8-wide issue.  Since a 24-port cell is difficult to implement,
a 2 bank design of 1024 total registers with 8-port cells is imple-
mented (Figure 20.1.5).  The cells share ports for read and write
that can occur in back-to-back phases.  Integrated precharge and
write amps support the back-to-back read/write operations as
shown in Figure 20.1.6.  Due to the large register file and the tran-
sit delays to route the operands to all of the execution units, the reg-
ister file stage of the pipeline is extended to 3 cycles.  Smaller reg-
ister caches added to the integer and floating-point execution units
reduce the performance penalty associated with this additional
latency.  The register caches store copies of the last 8 cycles of gen-
erated results, act as local bypass result multiplexers, and align
result write-back to the main register file avoiding contention for
the 8 write ports due to instruction latency.

Using pdSOI devices introduces a number of issues such as SOI
pass-gate effect [6].  A number of techniques are implemented to
avoid the pass-gate effect including replacing susceptible dynam-
ic circuits with static counterparts, and selected use of body-con-
tacted devices.  One example is shown in Figure 20.1.7 illustrat-
ing a segment of the core of the dual-rail 64b integer shifter
where the bodies of the differential pass gates are tied together
with the combination left floating.  In the original design with
floating bodies, significant pass-gate effects occur when the
inputs transition from high to low.  Capacitive coupling from the
falling source to the body and then from the body to the drain
causes a significant charge loss on the output.  With body ties,
the common body node does not rise beyond about a diode drop
above ground and the complementary input signals help balance
the coupling to the shared body node.

This design, the EV8 microprocessor, was cancelled prior to
release for manufacturing.  
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Figure 20.1.1: CPU block diagram.

Figure 20.1.2: High-level floorplan.

Figure 20.1.4: Instruction queue age mask.

Figure 20.1.3: Collapsing buffer network.

Figure 20.1.5: 8-port register file cell.
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Figure 20.1.6: Register file
write amp/precharge.

Figure 20.1.7: 64b integer
shifter with body-ties.
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