ArithFunct/pavel_yeltsin
ArithFunct/kett_x
f1def ADD(f, g):f1def ADD(f, g):
2    if callable(f) and callable(g):2    if callable(f) and callable(g):
n3        def f1(x):n3        def NEWADD(x):
4            return f(x) + g(x)4            return f(x) + g(x)
n5        return f1n5        return NEWADD
6    elif callable(f):6    elif callable(f):
n7        def f2(x):n7        def NEWADD(x):
8            return f(x) + g8            return f(x) + g
n9        return f2n9        return NEWADD
10    elif callable(g):10    elif callable(g):
n11        def f3(x):n11        def NEWADD(x):
12            return f + g(x)12            return f + g(x)
n13        return f3n13        return NEWADD
14    else:14    else:
n15        def f4(x):n15        def NEWADD(x):
16            return f + g16            return f + g
n17        return f4n17        return NEWADD
1818
1919
20def SUB(f, g):20def SUB(f, g):
21    if callable(f) and callable(g):21    if callable(f) and callable(g):
n22        def f1(x):n22        def NEWSUB(x):
23            return f(x) - g(x)23            return f(x) - g(x)
n24        return f1n24        return NEWSUB
25    elif callable(f):25    elif callable(f):
n26        def f2(x):n26        def NEWSUB(x):
27            return f(x) - g27            return f(x) - g
n28        return f2n28        return NEWSUB
29    elif callable(g):29    elif callable(g):
n30        def f3(x):n30        def NEWSUB(x):
31            return f - g(x)31            return f - g(x)
n32        return f3n32        return NEWSUB
33    else:33    else:
n34        def f4(x):n34        def NEWSUB(x):
35            return f - g35            return f - g
n36        return f4n36        return NEWSUB
3737
3838
39def MUL(f, g):39def MUL(f, g):
40    if callable(f) and callable(g):40    if callable(f) and callable(g):
n41        def f1(x):n41        def NEWMUL(x):
42            return f(x) * g(x)42            return f(x) * g(x)
n43        return f1n43        return NEWMUL
44    elif callable(f):44    elif callable(f):
n45        def f2(x):n45        def NEWMUL(x):
46            return f(x) * g46            return f(x) * g
n47        return f2n47        return NEWMUL
48    elif callable(g):48    elif callable(g):
n49        def f3(x):n49        def NEWMUL(x):
50            return f * g(x)50            return f * g(x)
n51        return f3n51        return NEWMUL
52    else:52    else:
n53        def f4(x):n53        def NEWMUL(x):
54            return f * g54            return f * g
n55        return f4n55        return NEWMUL
5656
5757
58def DIV(f, g):58def DIV(f, g):
59    if callable(f) and callable(g):59    if callable(f) and callable(g):
n60        def f1(x):n60        def NEWDIV(x):
61            return f(x) / g(x)61            return f(x) / g(x)
n62        return f1n62        return NEWDIV
63    elif callable(f):63    elif callable(f):
n64        def f2(x):n64        def NEWDIV(x):
65            return f(x) / g65            return f(x) / g
n66        return f2n66        return NEWDIV
67    elif callable(g):67    elif callable(g):
n68        def f3(x):n68        def NEWDIV(x):
69            return f / g(x)69            return f / g(x)
n70        return f3n70        return NEWDIV
71    else:71    else:
n72        def f4(x):n72        def NEWMUL(x):
73            return f / g73            return f / g
n74        return f4n74        return NEWMUL
7575
t76 t
77'''from math import *
78 
79f = SUB(sin, cos)
80print(f(12), sin(12)-cos(12))
81 
82g = DIV(sin, cos)
83print(g(pi/6), tan(pi/6))
84 
85h = MUL(exp, 0.1)
86print(h(2), e**2/10)
87 
88t = ADD(lambda s: len(s), sum)
89print(t(range(5)))'''
90 
Legends
Colors
 Added 
Changed
Deleted
Links
(f)irst change
(n)ext change
(t)op