
Out-of-tree kernel modules: some thoughts

September 23, 2017

1 / 16

Out-of-tree modules

– Modules ported to a different kernel version

– Backporting, forward portting of removed staging drivers

– Externally developed modules

– Intel, Qlogic networking drivers; ZFS on Linux, OpenAFS, ...

2 / 16

Driver development

– There are several good books that cover driver development
for Linux

– One of the latest and greatest is ”Linux Device Drivers, 3rd
Edition”

– Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

– And there are no plans for the fourth edition:
https://www.reddit.com/r/linux/comments/61q6y8/

– So the only actual reference is the Linux source code

3 / 16

https://www.reddit.com/r/linux/comments/61q6y8/

Driver development

– There are several good books that cover driver development
for Linux

– One of the latest and greatest is ”Linux Device Drivers, 3rd
Edition”

– Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

– And there are no plans for the fourth edition:
https://www.reddit.com/r/linux/comments/61q6y8/

– So the only actual reference is the Linux source code

3 / 16

https://www.reddit.com/r/linux/comments/61q6y8/

Driver development

– There are several good books that cover driver development
for Linux

– One of the latest and greatest is ”Linux Device Drivers, 3rd
Edition”

– Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

– And there are no plans for the fourth edition:
https://www.reddit.com/r/linux/comments/61q6y8/

– So the only actual reference is the Linux source code

3 / 16

https://www.reddit.com/r/linux/comments/61q6y8/

Driver development

– There are several good books that cover driver development
for Linux

– One of the latest and greatest is ”Linux Device Drivers, 3rd
Edition”

– Unfortunately, it has been written against Linux 2.6.10, which
came out in the year of 2004, 13 years ago

– And there are no plans for the fourth edition:
https://www.reddit.com/r/linux/comments/61q6y8/

– So the only actual reference is the Linux source code

3 / 16

https://www.reddit.com/r/linux/comments/61q6y8/

Porting issues

– Linux doesn’t have stable APIs (and internal ABIs, for that
matter)

– Luckily, most of the changes either introduce new APIs or are
syntactically incompatible with the existing code

4 / 16

Support for multiple kernel versions

– There are LINUX KERNEL VERSION and LINUX VERSION CODE

macros

– Mostly useless

5 / 16

Support for multiple kernel versions

– There are LINUX KERNEL VERSION and LINUX VERSION CODE

macros

– Mostly useless

5 / 16

Support for multiple kernel versions

One can implement various configure checks...
CR_CHECK_KERNEL_SYMBOL(SYMBOL,[INCLUDES],[TEMPLATE_TEXT])

Wrapper to invoke CR_CHECK_KERNEL_COMPILE for a given symbol

AC_DEFUN([CR_CHECK_KERNEL_SYMBOL],[

CR_CHECK_KERNEL_COMPILE([$1],[$2],[

int x = sizeof(&$1);

],[$3])])

CR_CHECK_KERNEL_CALL_NARGS(SYMBOL,INCLUDES,ARGS1[,ARGS2...])

See if each given SYMBOL(ARGSn) will compile

Defines HAVE_[N]_ARG_[uppercase(£1)] for N equal to argument

AC_DEFUN([CR_CHECK_KERNEL_CALL_NARGS],[

m4_if(m4_eval([$# >= 3]),1,[

pushdef([cr_nargs],[len(patsubst([$3],[[^,]+,?],[@]))])

CR_CHECK_KERNEL_CALL_FULL(cr_nargs[-arg $1],[$1],[$2],[],[$3],

[[Define to 1 if the kernel has]cr_nargs[-arg $1().]])

popdef([cr_nargs])])

m4_if(m4_eval([$# > 3]),1,[$0([$1],[$2],

m4_shift(m4_shift(m4_shift($@))))])dnl tail recursion

])

From BLCR’s acinclude.m4.

6 / 16

Support for multiple kernel versions

One can implement various configure checks...
CR_CHECK_KERNEL_SYMBOL(SYMBOL,[INCLUDES],[TEMPLATE_TEXT])

Wrapper to invoke CR_CHECK_KERNEL_COMPILE for a given symbol

AC_DEFUN([CR_CHECK_KERNEL_SYMBOL],[

CR_CHECK_KERNEL_COMPILE([$1],[$2],[

int x = sizeof(&$1);

],[$3])])

CR_CHECK_KERNEL_CALL_NARGS(SYMBOL,INCLUDES,ARGS1[,ARGS2...])

See if each given SYMBOL(ARGSn) will compile

Defines HAVE_[N]_ARG_[uppercase(£1)] for N equal to argument

AC_DEFUN([CR_CHECK_KERNEL_CALL_NARGS],[

m4_if(m4_eval([$# >= 3]),1,[

pushdef([cr_nargs],[len(patsubst([$3],[[^,]+,?],[@]))])

CR_CHECK_KERNEL_CALL_FULL(cr_nargs[-arg $1],[$1],[$2],[],[$3],

[[Define to 1 if the kernel has]cr_nargs[-arg $1().]])

popdef([cr_nargs])])

m4_if(m4_eval([$# > 3]),1,[$0([$1],[$2],

m4_shift(m4_shift(m4_shift($@))))])dnl tail recursion

])

From BLCR’s acinclude.m4.

6 / 16

Support for multiple kernel versions

...or perform various trickery.
/*

* "[kernel] list: fix order of arguments for hlist_add_after(_rcu)"

* (commit 1d023284c31a) introduced new hlist_add_behind function,

* which fixes unnatural argument order used in hlist_add_after function.

*/

#ifndef hlist_add_behind

define hlist_add_behind(a, b) hlist_add_after(b, a)

#endif

#if LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0)

/* Added in 786e2288 */

/* Working around SLES 11 where it is defined despite 3.0 kernel version */

#define pci_pcie_type(dev) my_pci_pcie_type(dev)

static inline int my_pci_pcie_type(struct pci_dev *dev)

{

return (pcie_caps_reg(dev) & PCI_EXP_FLAGS_TYPE) >> 4;

}

#endif /* #if LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0) */

7 / 16

Support for multiple kernel versions

...or perform various trickery.
/*

* "[kernel] list: fix order of arguments for hlist_add_after(_rcu)"

* (commit 1d023284c31a) introduced new hlist_add_behind function,

* which fixes unnatural argument order used in hlist_add_after function.

*/

#ifndef hlist_add_behind

define hlist_add_behind(a, b) hlist_add_after(b, a)

#endif

#if LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0)

/* Added in 786e2288 */

/* Working around SLES 11 where it is defined despite 3.0 kernel version */

#define pci_pcie_type(dev) my_pci_pcie_type(dev)

static inline int my_pci_pcie_type(struct pci_dev *dev)

{

return (pcie_caps_reg(dev) & PCI_EXP_FLAGS_TYPE) >> 4;

}

#endif /* #if LINUX_VERSION_CODE < KERNEL_VERSION(3,6,0) */

7 / 16

Building

– Kbuild has some support for building out of tree modules:

make -C ${KERNEL_DIR} M=${BUILD_DIR} modules

– Not much more than that

Two useful pieces of information:

– Kbuild has rather poor support for out-of-tree building: it
can’t use generated Makefile (which is put in the build
directory by config.status), for example

– GCC version used for module building must match GCC
version used for kernel building; most distributions specify it
explicitly in kernel make files, but SuSE doesn’t

8 / 16

Building

– Kbuild has some support for building out of tree modules:

make -C ${KERNEL_DIR} M=${BUILD_DIR} modules

– Not much more than that

Two useful pieces of information:

– Kbuild has rather poor support for out-of-tree building: it
can’t use generated Makefile (which is put in the build
directory by config.status), for example

– GCC version used for module building must match GCC
version used for kernel building; most distributions specify it
explicitly in kernel make files, but SuSE doesn’t

8 / 16

Building

– Kbuild has some support for building out of tree modules:

make -C ${KERNEL_DIR} M=${BUILD_DIR} modules

– Not much more than that

Two useful pieces of information:

– Kbuild has rather poor support for out-of-tree building: it
can’t use generated Makefile (which is put in the build
directory by config.status), for example

– GCC version used for module building must match GCC
version used for kernel building; most distributions specify it
explicitly in kernel make files, but SuSE doesn’t

8 / 16

Example Makefile

M ?= .

SRC ?= $(filter-out %.mod.c,$(subst $(M)/,,$(wildcard $(M)/*.c)))

HDR ?= $(subst $(M),,$(wildcard $(M)/*.h))

OBJ := $(patsubst %.c,%.o,$(SRC))

-include config.mk

obj-m += $(MODULE_NAME).o

$(MODULE_NAME)-y := $(OBJ)

all: module

module: $(MODULE_NAME).ko

$(MODULE_NAME).ko: $(SRC) $(HDR)

$(MAKE) -C $(KERNELDIR) M=$(MODULE_SRC_DIR) modules

.PHONY: all module

9 / 16

Packaging

I No established way to package out-of-tree modules (Fedora
just ignores their existence in Packaging Guidelines1, for
example)

I Users can build their own kernels (with different internal APIs
and ABIs), which makes distribution of pre-built kernel
modules impossible.

1”Fedora strongly encourages kernel module packagers to submit their code
into the upstream kernel tree”, they say

10 / 16

dkms

I Provides an infrastructure for managing out-of-tree modules

I Support building of modules, distribution tarballs, RPMs,
DEBs

I De-facto standard for maintaining out-of-tree kernel modules
in most community distributions.

Figure: State machine for a driver managed by DKMS

11 / 16

dkms: issues

I Assumes (direct) control. Otherwise:

– We have a makefile...

– ...that is embedded by Kbuild in order to get list of objects to
build...

– ...and has rules for calling dkms build...
– ...that uses config that calls make with this makefile.

I Implements full module management functionality that
conflicts with the one distribution has.

12 / 16

dkms: issues

I Assumes (direct) control. Otherwise:

– We have a makefile...
– ...that is embedded by Kbuild in order to get list of objects to

build...

– ...and has rules for calling dkms build...
– ...that uses config that calls make with this makefile.

I Implements full module management functionality that
conflicts with the one distribution has.

12 / 16

dkms: issues

I Assumes (direct) control. Otherwise:

– We have a makefile...
– ...that is embedded by Kbuild in order to get list of objects to

build...
– ...and has rules for calling dkms build...

– ...that uses config that calls make with this makefile.

I Implements full module management functionality that
conflicts with the one distribution has.

12 / 16

dkms: issues

I Assumes (direct) control. Otherwise:

– We have a makefile...
– ...that is embedded by Kbuild in order to get list of objects to

build...
– ...and has rules for calling dkms build...
– ...that uses config that calls make with this makefile.

I Implements full module management functionality that
conflicts with the one distribution has.

12 / 16

dkms: issues

I Assumes (direct) control. Otherwise:

– We have a makefile...
– ...that is embedded by Kbuild in order to get list of objects to

build...
– ...and has rules for calling dkms build...
– ...that uses config that calls make with this makefile.

I Implements full module management functionality that
conflicts with the one distribution has.

12 / 16

akmods

I Set of scripts for rebuilding kmod source RPMs for various
kernels, tailored specially for Fedora

I kmod RPM specs consist of lots of boilerplate code and are
written aroung big fat %{kernel module tool} macro and
kmodtool script

I Packaging is not automated at all, ”just grab spec template
and shape it to suit your needs”

13 / 16

ddiskit

I Kernel module backporting assitance tool

I Tailored for the Red Hat Driver Disk building workflow

I Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

I The second version was the same, but builds RPMs

I The third incarnation is a Python rewrite that introduced
more automation

I %{kernel module tool}-free!

14 / 16

ddiskit

I Kernel module backporting assitance tool

I Tailored for the Red Hat Driver Disk building workflow

I Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

I The second version was the same, but builds RPMs

I The third incarnation is a Python rewrite that introduced
more automation

I %{kernel module tool}-free!

14 / 16

ddiskit

I Kernel module backporting assitance tool

I Tailored for the Red Hat Driver Disk building workflow

I Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

I The second version was the same, but builds RPMs

I The third incarnation is a Python rewrite that introduced
more automation

I %{kernel module tool}-free!

14 / 16

ddiskit

I Kernel module backporting assitance tool

I Tailored for the Red Hat Driver Disk building workflow

I Initially, it was basically a set of make rules that automate
building of set of kernel modules for a set of kernels

I The second version was the same, but builds RPMs

I The third incarnation is a Python rewrite that introduced
more automation

I %{kernel module tool}-free!

14 / 16

ddiskit

I Import sources from kernel tree:

ddiskit prepare_sources \

-d drivers/net/ethernet/ibm -r ${GIT_HASH}

I Generate spec:

ddiskit generate_spec

I Build RPM:

ddiskit build_rpm -G -a -e -m

I Generate Driver Disk:

ddiskit build_iso

15 / 16

Links

– LDD3: https://lwn.net/Kernel/LDD3/

– BLCR: http://crd.lbl.gov/departments/computer-science/
CLaSS/research/BLCR/

– dkms: https://github.com/dell/dkms

– akmods:
https://rpmfusion.org/Packaging/KernelModules/Akmods

– ddiskit: https://github.com/orosp/ddiskit

16 / 16

https://lwn.net/Kernel/LDD3/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
https://github.com/dell/dkms
https://rpmfusion.org/Packaging/KernelModules/Akmods
https://github.com/orosp/ddiskit

	Introduction
	Development
	Packaging
	Conclusion

